Physics Assessment Tune-up

Calculators are permitted and formula sheet supplied for the test.

You may also telephone BCIT at 604-451-6832 for more information.

1. A wooden raft, 5 -feet long and 4 -feet wide, floats in water. When a person steps on the raft, it sinks 1.5 inches deeper into the water. Calculate the person's weight. Density of water: $62.4 \mathrm{lb} / \mathrm{ft}^{3}$.
2. Find the specific gravity of a substance that has a mass of 148.5 g and a volume of $30.5 \mathrm{~cm}^{3}$.
3. At $100^{\circ} \mathrm{C}$ a gas occupies a volume of $2.5 \mathrm{~m}^{3}$. What will be its volume at $0^{\circ} \mathrm{C}$?

4 A steel plate measures $3^{\prime} \times 5^{\prime}$. If the pressure is $30 \mathrm{lb} / \mathrm{in}^{2}$, calculate the force on the plate.
5. A car accelerates from a velocity of $15 \mathrm{~m} / \mathrm{sec}$ to $25 \mathrm{~m} / \mathrm{sec}$ in 2 seconds. Calculate the acceleration.
6. A man carries a load of 50 Kg to a height of 15 m in 5 minutes. Calculate a) the work done, b) the power extended.
7. A truck changes its velocity from $30 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 5 seconds. How far does it travel during the change?
8. A $3000-\mathrm{Kg}$ is hoisted 2 m above the ground. Calculate its potential energy.
9. A force of 3000 N moves a mass of 500 Kg a distance of 8 m in 15 seconds. How much work has been done?
10. A screw jack has a pitch of $1 / 2^{\prime \prime}$ and is turned with a bar 4^{\prime} long. Calculate a) the MA, b) the load that can be lifted (theoretically) with a force of $50 \mathrm{lbs}, \mathrm{c}$) the efficiency of the machine if a load of 10,000 lbs is lifted.
11. A steel bar 1.5 m long is used to lift a stack of plates. If the fulcrum is 5 cm from the end of the bar and a force of 500 N is used, calculate a) the MA, b) the resistance force.
12. A steel rod 90 cm long is heated from $15^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Calculate the increase in length if the coefficient of linear expansion is $0.000012 /{ }^{\circ} \mathrm{C}$.
13. How much energy does it take to change a 750 g block of ice at $-5^{\circ} \mathrm{C}$ to steam at $135^{\circ} \mathrm{C}$?
14. A block of aluminum measures $80 \mathrm{~cm} \times 60 \mathrm{~cm} \times 50 \mathrm{~cm}$. It is heated from $25^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. Calculate its increase in volume. Coefficient of linear expansion is $0.0000221 /{ }^{\circ} \mathrm{C}$.
15. A 12 V battery is connected to parallel resistors of 9Ω and 18Ω. How much power is consumed by the total resistance?
16. A lamp is designed to operate on 6 V and draw a current of 40 mA . It is connected to 9 V . What size resistor must be connected in series?

Hint: Find resistance of the lamp when it is drawing 40 mA .

Answers:

1. 156 lb
2. 100 m
3. 555 Kcal , or 2.32 MJ
4. 4.9:1
5. 58.8 KJ
6. $7558 \mathrm{~cm}^{3}$
7. $1.8 \mathrm{~m}^{3}$
8. 24 KJ
9. 24 W
10. $64,800 \mathrm{lb}$
11. $603: 1,30150 \mathrm{lb}, 33 \%$
12. 75Ω
13. $5 \mathrm{~m} / \mathrm{s}^{2}$
14. $29: 114500 \mathrm{~N}$
15. $7350 \mathrm{~J}, 24.5 \mathrm{~W}$
16. 0.08 cm

Physics Assessment Test Formulas

$$
\begin{aligned}
& \mathrm{F}=\mathrm{A} \mathrm{X} \mathrm{P} \\
& \mathrm{~F}=\mathrm{m} \mathrm{x} \mathrm{~g}(\mathrm{wt}=\mathrm{m} \mathrm{xg}) \\
& \mathrm{A}=\mathrm{L} \mathrm{X} \mathrm{~W} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~g}=32 \mathrm{ft} / \mathrm{s}^{2} \\
& \mathrm{D}=\mathrm{m} / \mathrm{V}(\mathrm{D}=\mathrm{wt} / \mathrm{V}) \\
& \mathrm{V}=\mathrm{L} \mathrm{X} \mathrm{~W} \mathrm{X} \mathrm{H} \\
& \mathrm{D}_{\text {water }}=62 \mathrm{lb} / \mathrm{ft}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Buoyant force $=w t$ in air -wt in water
sp.gr. $=\frac{\text { wt_in_air }}{\text { buoyant_force }}$
sp.gr. $=\frac{\text { mass density }}{\text { mass density of water }}$

Absolute pressure $=$ gauge pressure + atm pressure
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
(P are absolute pressures and T are absolute temperatures)

$$
\begin{aligned}
& \mathrm{K}^{0}=\mathrm{C}^{\mathrm{o}}+273 \\
& \mathrm{R}^{\mathrm{o}}=\mathrm{F}^{\mathrm{o}}+460 \\
& \frac{\mathrm{E}}{\mathrm{R}}=\frac{\mathrm{RD}}{\mathrm{ED}} \\
& \mathrm{P}=\mathrm{F} / \mathrm{A}
\end{aligned}
$$

$\mathrm{v}=\frac{\mathrm{d}}{}$	$\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$	$\mathrm{BTU}=\mathrm{W} \times \Delta \mathrm{T} \times \mathrm{SH}$	
,	$\mathrm{Q}($ lost $)=\mathrm{Q}$ (gained)		
$a=\frac{v}{t}\left(v=\text { final velocity, } v_{0}=0\right)$	$\mathrm{Q}=\mathrm{mL}_{\mathrm{f}}$	S.H. $\mathrm{H}_{2} \mathrm{O}=1$	Fusion $=144 \mathrm{BTU} / \mathrm{lb}$
	$\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}$	S.	
t	$\Delta \mathrm{L}=\mathrm{aL}_{0} \Delta \mathrm{~T}$		
$\mathrm{d}=1 / 2$ at 2 if $\mathrm{v}_{0}=0$	$\Delta \mathrm{V}=\mathrm{b} \mathrm{~V}_{\mathrm{O}} \Delta \mathrm{~T}$	S.H. Steam $=0.48$	Vaporization $=970.4 \mathrm{BTU} / \mathrm{lb}$
$\mathrm{f}=\mathrm{m} \times \mathrm{a}$	$\underline{\mathrm{Q}}=\underline{\mathrm{kA} \Delta \mathrm{T}}$		
$1 \mathrm{mph}=1.47 \mathrm{ft} / \mathrm{s}$	t d	$\mathrm{KJ}=\mathrm{M} \times \Delta \mathrm{T} \times \mathrm{SH}$	
$\mathrm{W}=\mathrm{Fxd}$	$\mathrm{R}=\frac{\mathrm{d}}{\mathrm{k}}$		
$\mathrm{P}=\mathrm{W} / \mathrm{t}$	$\mathrm{Rt}=\mathrm{R} 1+\mathrm{R} 2+\ldots$	S.H. $\mathrm{H}_{2} \mathrm{O}=4.186$	Fusion $=335 \mathrm{KJ} / \mathrm{kg}$
$\mathrm{KE}=$ work $=\mathrm{Fxd}=1 / 2 \mathrm{mv}^{2}$	$\mathrm{E}=\mathrm{IR}$		
$\mathrm{PE}=\mathrm{mgh}(\mathrm{F} \times \mathrm{h})$	$\mathrm{P}=\mathrm{EI}$	S.H. Ice $=2.093$	
		$\text { S.H. Steam }=2.009$	$\text { Vaporization }=2260 \mathrm{KJ} / \mathrm{kg}$

